
NASA Contractor Report 198514

/_/ /
7

Active Control of Fan Noise: Feasibility Study
Volume 6: Theoretical Analysis for Coupling of Active Noise
Control Actuator Ring Sources to an Annular Duct with Flow

R.E. Kraft

General Electric Aircraft Engines
Cincinnati, Ohio

September 1996

Prepared for
Lewis Research Center

Under Contract NAS3-26617

NationaJ Aeronautics and

Space Administration





Active Control of Fan Noise: Feasibility Study

Volume 6: Theoretical Analysis for Coupling of Active Noise Control

Actuator Ring Sources to an Annular Duct with Flow

Summary

The objective of this effort is to develop an analytical model for the coupling of

active noise control (ANC) piston-type actuators that are mounted flush to the inner and

outer walls of an annular duct to the modes in the duct generated by the actuator motion.

The analysis will be used to couple the ANC actuators to the modal analysis propagation

computer program for the annular duct, to predict the effects of active suppression of fan-

generated engine noise sources. This combined program will then be available to assist in

the design or evaluation of ANC systems in fan engine annular exhaust ducts.

An analysis has been developed to predict the modes generated in an annular duct

due to the coupling of flush-mounted ring actuators on the inner and outer walls of the

duct. The analysis has been combined with a previous analysis for the coupling of modes

to a cylindrical duct in a FORTRAN computer program to perform the computations.

The method includes the effects of uniform mean flow in the duct. The program can be

used for design or evaluation purposes for active noise control hardware for turbofan

engines.

Predictions for some sample cases modeled after the geometry of the NASA Lewis

ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6

spinning mode at frequencies where only a single radial mode is cut-on. Radial mode

content in higher order cut-off modes at the source plane and the required actuator

displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted.

Equivalent cases with and without flow were examined for the cylindrical and annular

geometry, and little difference was found for a duct flow Mach number of 0.1.

The actuator ring coupling program will be adapted as a subroutine to the

cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the
fan source to be defined in terms of characteristic modes at the fan source plane and

predict the propagation to the arbitrarily-located ANC source plane. The actuator
velocities can then be determined to generate the anti-phase mode. The resulting

combined fan source/ANC pressure can then be calculated at any desired wall sensor

position. The actuator velocities can be determined manually or using a simulation of a

control system feedback loop. This will provide a very useful ANC system design and
evaluation tool.
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1. Introduction

1.1 Program Objective

The objective of this effort is to develop an analytical model for the coupling of

active noise control (ANC) piston-type actuators that are mounted flush to the inner and

outer walls of an annular duct to the modes in the duct generated by the actuator motion.

The analysis will be used to couple the ANC actuators to the modal analysis propagation

computer program for the annular duct, to predict the effects of active suppression of fan-

generated engine noise sources. This combined program will then be available to assist in

the design or evaluation of ANC systems in fan engine annular exhaust ducts.

1.2 Previous Effort

In a prior analysis 1, a model was developed for the coupling of ANC sources to a

cylindrical duct, more representative of a turbofan inlet. The reader is referred to that

paper for background on prior research and motivation for the application of ANC

systems to aircrait engines.

The previous analysis did not account for the effects of mean flow, which is

included in this analysis. The present study is based in large part on the development

presented in the previous paper, extending the analysis to include annular duct geometry
with ANC actuators on both inner and outer walls and the effects of uniform mean flow.

The results apply to both cylindrical and annular ducts, with or without mean flow. The

extension to annular ducts provides a first approximation to simulating a fan exhaust

system.

1.3 Duct Geometry

Figure (1). shows the duct geometry and the mounting positions for the actuator

rings. The radial variable is r, the angular variable is 0, and the axial variable is z. The

duct inner and outer radii are given by r_ and r2, respectively. The actuator ring has axial

extent L, and the zero of the axial coordinate system is taken as the upstream end of the

actuator ring. The mean flow velocity is denoted as U, and the flow is positive when

moving in the direction of the positive z-axis (exhaust duct flow will be positive, inlet duct

flow will be negative).



z=L
z=O

Figure (1). Annular geometry for ANC actuator mounting.

1.4 Assumptions

The analysis is subject to a number of idealizations and simplifying assumptions.

Among these are:

1. The duct geometry is axisymmetric and is assumed to be constant in inner and outer

radii along the full length of the duct.

2. The mean flow is assumed to have a uniform profile, that is, contains no shear layers.

3. The actuators are rectangular in shape, and behave like rigid pistons, achieving a

volume velocity equivalent to a piston mounted flush to the wall.

4. It is assumed that there is no interaction between the propagating fan-source-

generated mode passing the actuator rings and the pistons, that is, the pistons are

assumed to have infinite internal impedance.

The program is meant primarily for computing the case in which only one radial

mode is cut-on. The actuator velocity that generates the first radial mode that matches

the fan source mode is found. The complex ratio of inner actuator velocity to outer

actuator velocity is given, and this ratio is maintained throughout the computation as the

outer wall actuator velocity is scaled. The program solution determines the pressure

(modal) spillover into higher-order cut-off modes at the actuator source plane. Although

these modes do not propagate, the smaller their value the more efficient is the coupling of

the actuators to the desired mode.

The program can also be used for the case with mukiple cut-on radial modes, but

the computation attempts to match only the first radial mode to the input SPL level. The

given inner actuator velocity to outer actuator velocity ratio is maintained throughout the

computation. The mode coefficient obtained for the second radial mode will depend on

the velocity chosen for the inner actuator, but the program does not attempt to find the



inner actuator velocity that best matches both fan source mode coefficients
simultaneously.This,in fact,maybeaverydifficultproblemto solve.

1.5 Approach

The approach will be to use a classical modal solution to the wave equation in an

annular duct with non-homogeneous boundary conditions. A transformation of variables

method is applied that transforms the homogeneous differential equation with non-

homogeneous boundary conditions to a non-homogeneous differential equation with

homogeneous boundary conditions, which is more tractable. A modal expansion in
hardwall duct modes is used to solve the radial variation and the axial variation is solved

using infinite Fourier Transforms. This is similar to the approach in Reference 1, with the

extension to more complex annular geometry and the inclusion of the effects of mean
flow.

1.6 Summary of Results

An analysis has been developed that predicts the modes generated in an annular

duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of

the duct. The analysis has been combined with a previous analysis for the coupling of

modes to a cylindrical duct in a FORTRAN computer program which is operational and

partially validated. The method includes the effects of uniform mean flow in the duct.

The program can be used for design or evaluation purposes for active noise control

hardware for turbofan engines.

Predictions for some sample cases modeled using the geometry of the NASA

Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the

m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial

mode content in higher order cut-off modes at the source plane and the required actuator

displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted.

Equivalent cases with and without flow were examined for the cylindrical and annular

geometry, and little difference was found for a duct flow Mach number of 0.1. The use of

the inner ring of actuators to improve coupling efficiency to a single radial mode and to

couple to two radial modes simultaneously was examined.



2. Analysis of ANC Actuator Coupling to an Annular Duct

2.1 Wave Equation for the Acoustic Pressure

The partial differentia/equation for the acoustic pressure in a duct with uniform

mean flow is given by

+U 0 p=c2V2p (1)

t = time

z = axial variable

p = acoustic pressure

c = speed of sound

U = mean flow velocity in the z- direction

where

Using the Laplacian operator in a cylindrical coordinate system and postulating harmonic

time dependence of the form

p(t)= e-let (2)

where

i =
co = circular frequency, = 2nf

f = frequency, Hz.,

we can write Equation (1) in the form

1 ( _zz)2 1C_(r_+lc32___p_p O2p_- -ico+U P=r_--Tr_, _rr) r2 _902 +- az 2
(3)

wh_e

r

O =

radial variable

circumferential variable.

The periodic boundary condition in 0 allows us to separate the 0-dependence of

the solution in the form

4



p(r,z,O)= p(r,z)eira° (4)

where

m = spinning mode order, any positive or negative integer or zero

When Equation (4) is substituted into the partial differential equation, this further reduces

the form to

1 a (rC3p" _ m 2 __ =
r fir[ )-&r ---_-p+2ikM c_zPz+(l+M2) _2Pc3z2 +k2p 0 (5)

where

k = wavenumber, = c0/c (constant)

M = mean flow Mach number, = U/c (constant)

This is the homogeneous partial differential equation in the radial and axial

variables. The solution for p in r and z must satisfy this equation and the boundary

conditions applied by the actuators at their locations on the inner and outer walls of the

duct.

2.2 Boundary Condition with Slip Flow

The actuators will be modeled as rigid pistons of rectangular shape that vibrate

with infinite internal impedance at frequency co. On the actuator surface, the wall has a

radial velocity component denoted by vw. The boundary condition, which must include the

effects of slip flow at the wall surface, will be written in terms of the requirement that the

normal component of acoustic particle displacement be continuous at the wall (it should

be noted that the physically incorrect assumption of slip flow leads to the anomaly of

different boundary conditions depending on whether particle displacement or particle

velocity continuity is assumed2).

The normal velocity of the actuator surface at the wall is related to the surface

displacement for harmonic time dependence as

Vw = -ico; (6)

where _ denotes either the actuator surface displacement or the acoustic particle

displacement at the wall. The acoustic particle velocity at the wall is written in terms of

the acoustic particle displacement using the convected derivative,

5



Vr(io+U z 
where vr is the radial component of the acoustic velocity.

The radial component of the acoustic momentum equation is given by

t3__pp= ioov r _ pU _¢r
_r _z

(7)

(8)

where 9 is the ambient air density. The assumption of continuity of particle displacement

at the wall requires that the actuator displacement be the same as the normal component

of acoustic particle displacement. Combining Equations (6) and (7) gives the relation

between actuator normal velocity and the acoustic particle velocity normal to the wall.

Vr:I +iM z)Vw
(9)

Substituting the expression for the acoustic velocity at the wall into the momentum

equation gives the boundary condition for the pressure at the wall

0p = i k + iM v w
Or

(I0)

The actuator velocity at the wall can be Fourier-analyzed into its various spinning

mode components in the circumferential direction, which will depend on the functional

form of the actuator velocity in 0

oO

Vw(O) = ZVwm eim0 (11)

m: --aO

where v,,,_ is the m-order component of the actuator circumferential velocity profile at the

wall. This expansion and a method to determine the v,,,_ to generate a preferred m-order

were the considered in Kraft and Kontos 3. For this analysis, we assume that only a single

m-order is under consideration, and that the m-order component of theactuator wall

velocity variation has been determined and is given.

The actuator velocity at the inner and outer walls can be expressed in terms of the

m-order spinning mode component and the axial velocity profile as

Vlw = Vlmh(z ) (12)



and

V2w = v2mh(z ) (13)

where subscript 1 refers to the inner wall, subscript 2 refers to the outer wall, and h(z) is

the dimensionless axial functional dependence of the actuator velocity.

The boundary condition equation at the inner wall can then be written

0p =_(l+iMk _Z0)2-_-rl Almh(z) at r=q, 0<z<L (14)

and the boundary condition at the outer wall can be written

0-_rP2=(l+iM c3_ 2t, k &J A2mh(z) atr=r2, 0<z<L (15)

where we define the m thorder coefficient &the wall velocity at the inner wall as

Alm= -ipCkVlm (16)

and the mth order coefficient of the wall velocity at the outer wall as

A2m = -ipckV2m (17)

We have made an implicit assumption here that leading and trailing edges of the inner and

outer rings align at the same axial stations. Later it will be shown that this is necessary to

simplify the analysis. Kings that do not align axially can be considered separately and the

generated pressure fields will add linearly.

We shall also refer to the effective volume velocity of the actuator rings, which is

defined at the inner wall as

L

and at the outer wall as

Vlm = eimO I Vlmh(z)dz (18)

L

V2m = eim° I V2m h(z)dz
0

(19)
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For the purposesof this analysis,we assumethat the duct walls adjoining the

actuator rings at both the inner and outer walls are hard, so that the boundary condition

away from the actuator region is given by

O__p_p=o at r=q and r=r 2 for z<O and z>L (20)
&

2.3 Transformation to a Non-Homogeneous Differential Equation with

Homogeneous Boundary Conditions

The objective is to transform the homogeneous differential equation with non-

homogeneous boundary conditions into a non-homogeneous differential equation with

homogeneous boundary conditions. This is accomplished using a three-dimensional

transformation of variables for the acoustic pressure of the form

f(r, 0, z) = p(r, 0, z) - g(r, 0, z) (21)

where g(r,0,z) is chosen to be an otherwise arbitrary function that satisfies the non-

homogeneous boundary conditions.

The choice we shall make for g(r,0,z) is a quadratic form in r:

g(r,O,z)=[B,r+B2r2]e °h(z) (22)

where B_ and B2 are undetermined constants. Then, at r = rl,

Og _ 2B2rl]eimOh(z)0r-[al + (23)

and at r = r2,

0__gg0r= [B1 + 2B2r2]eim°h(z) (24)

We want to show that f(r,0,z) satisfies homogeneous boundary conditions at rl and

r2. The radial derivative of fat r = r_ can be written as

0f_0p 0g=(l+i M 0/2Or Or Or k Oz A2mh(z)-[B1 +2B2rl]h(z) (25)



where Equation (15) for the boundary condition in p and Equation (24) for the boundary

condition in g have been substituted and the common e_° factor has been divided out.

Similarly, the radial derivative of fat r = r2 can be written as

Of 0p 0g ( iM c3)2- _rr _rr - 1+ --k-_zJ A2mh(z)-[B1 +2B2rz]h(z)
(26)

To get homogeneous boundary conditions in f, we set

Of
--=0 at r=q and r=r 2 (27)
Or

Carrying out the derivatives of h(z) from the square of the convected derivative in

Equations (25) and (26), we can define a function

HM(Z) = I +2i Mh' (-_] 2h''k h h (28)

where the primes denote differentiation with respect to z. Equations (25) and (26), then,

are two equations in two unknowns for B1 and B2, which can be solved to give

B l = HMA2m - HM'A2m( - Alm'] r2 (29)
r2-r 1

and

HM (A2m -Alm) (30)
B 2 = 2(r2 -rl)

Note that B1 and B2 are functions ofz. With the coefficients B1 and B2, the function g is

completely determined, and the function f satisfies homogeneous (zero derivative)

boundary conditions.

It remains to derive the differential equation that f must satisfy. This is found by

substituting Equation (21) for p into the differential equation. After a fair amount of

algebra, the result can be shown to be



-_--f+2ikMOf+(l+M 2) +k2f=r T,j-

(m - 1r

This is the non-homogeneous partial differential equation that must be satisfied by the

function f, which, by virtue of the particular choice of g, has homogeneous boundary

conditions.

For convenience, we shall write the differential operator on the lett-hand-side of

Equation (31) as

_() lv--_(r_--) m2 0-_ 02....
r or(&) r; + _z 2

(32)

The right-hand-side of the differential equation can also be written in a somewhat easier to

grasp form as

where

and

Q(r, z) = D 1 1 + D2 + D3 r + D4r2 (33)
r

Dl(z) = (m 2 - 1)Blh (34)

(35)

(36)

Using Equations (32) and (33), the differential equation can now be written simply

2(f) = Q(r, z) (38)

as

10



Note that the "source" term on the fight-hand-sideof the differentialequation
dependson frequency,Mach number,radius,and the z-dependenceof the actuator
velocityprofile.

2.4 Derivation of the Non-Homogeneous Differential Equation in z

The solution to the non-homogeneous differential equation is obtained as an

expansion in a series of eigenfunctions of the radial modes in an annular duct such that the

expansion coefficients are functions ofz that depend on mode order (m,n)

¢o

f(r,z) = E fmn (Z)q)mn (0tmnr) (39)
n=l

where n is the radial mode index ordered such that the lowest order radial mode (the first)

has n = 1, and the annular duct eigenfunctions are given by

qOmn(O_mnr) : Jm(C_mnr) + CmnYm(O_mn r) (40)

where Jm is the mth order Bessel function of the first kind, and Y= is the m th order Bessel

function of the second kind. The eigenvalues _ are the roots of the boundary condition

equation for a hardwall annular duct,

_ ( _
_g)mnt_mnrj = 0 at r = q and r = r2 (41)

c_r

These roots can be found by various means, and are assumed to be known. Root-finding

subroutines are provided as part of the program that implements this analysis for both

cylindrical and annular ducts.

If we define

Ynm - CCmar2 (42)

then the mode coefficient Cm can be written as

Cmn =

-mJm(Ymn) + YmnJm+l(Y mn)

mYm (31mn) - _' mnYm +1 (Y mn)

Note that ifr_ = 0, them C,_ = 0.

(43)

11



The first step in finding the unknown coefficients fm is to multiply through the

differential equation (38) by q_mr and integrate from r_ to r2.

r2 1"2

f q)mJZ(f)rdr = I Q(r' Z)qlmj(_mjr) rdr

rl rl

Substituting Equation (3 9) for f in the differential operator, we have

o0

S(f)= E d[fmn(Z)g0mn(O_mnr)]
ri=l

Applying the differential operator to the individual terms in the sum, we get

f II-_-_(r(3(Pmn_ m2_mn 1 0finn_[fmn(Pmn]= mnLr ogre. Or ) _ +k2q)mn +2ikM--_z _mn +

(44)

(45)

1 M 2_ c_2fmn
- ) --7-_- (pmn

(46)

The first two terms of the term in square brackets on the right-hand-side of Equation (46)

can be recognized as the Bessel eigenfunction equation for the radial mode in a cylindrical

or annular duct, so that we can (without proof) state the following relationship:

1 o___(r C_(pm n _ m 2omn 2 (47)

r _r_, ---_r; r 2 - O_mnq?mn

Making these substitutions, Equation (44) becomes

(1-M2)fmj+2ikMfmj+(k 2-cz2 )fmj- 1 !mj Nm j Q(r' z)q) mJ(OCmjr)rdr

where

Nmj = Iq_mj_mjrdr

(48)

(49)

12



is the mode normalizationintegral,where we have madeuse of the orthogonality
propertiesof theeigenfunctions,

r2

f q_mnq_rnjrdr = 0 for n _ j, (50)

rl

and where Q(r,z) is given by Equations (33) through (37).

The integration over r on the right-hand-side of Equation (48) breaks into four

separate integrals, and can be written as

r2

I Q(r' Z)q_mn(C_mnr)rdr

rl

where

= DI(z)H_ n + D2H_ TM + D3H_ n + D4H_ m (51)

r2

H_nn = I ¢0mn(°Cmnr)dr

ri

(52)

r2

H_ = _<pmn(OCmnr)rdr

rl

(53)

r2

Hp n = _q)mn(CCmnr)r2dr

rl

(54)

and

r 2

H_n = I q)mn(_rnnr)r3dr

rl

(55)

These integrals must be calculated numerically, but will be constants depending only on

mode order when computed. The integration subroutines are described briefly in

Appendix A.

We now transform the differential equation in z to a form that explicitly shows the

dependence on the actuator velocity function h(z) on the right-hand-side. The result is

13



(1- M2)fmj+ 2ikMfmj+(k 2-a2mj)fmj: Q(Oh + Q(2m_)h'+ Q(3r_)h'"+

n(4) (h')2 +Q(Sm_) h'h" Q(6m_) (h")2__ --.d/- --

-_mn h h h

where

(56)

Q(1) =(m 2 _ 1)BA]H_nn +(4+ m2)BA2H{nn- k2BA]H_n- k2BA2H_nn (57)

Q(2): (m 2 - 1)2i M-M-BA1H_nn + (4+ m 2)2i -_ BA2H_ in-k

4iMkBA2H _

4iMkBAIH_ m -

and where

(58)

Q(3m_)=-(m 2 -1 BA1H_ m -(4+m 2 BA2H_ TM -(1- 2M2)BA]H_ m -

(1 - 2M2)BA2H_

Q(4rn_) = 4M2[BAIH_ TM -- BA2H_ an ]

k

Q(6) M2(1-M2)[mn =" k2 BA1H_ m - BA2H_ TM ]

(59)

(60)

(61)

(62)

(63)

(64)
A2m - Alto

BA 1 = A2m r2

Q(5) _
mn

r2-q

14



A2m - Alto (65)
BA 2= 2(r2_q)

The C) (j) coefficients are constants, so that all the z-variation on the right-hand-side of
"_mn

Equation (56) is contained in the h-function and its derivatives. This completes the

derivation of the ordinary differential non-homogeneous differential equation in z, which
will now be solved.

2.5 Fourier Transform for z-Dependence

We solve Equation (56) using the method &infinite Fourier Transforms. Since we

have not specified a particular form for the actuator velocity profile function h(z), we will

only be able to express its Fourier transform symbolically at this point. The last three

terms on the right-hand-side of Equation (56), which contain products and ratios of the h-

function and its derivatives, are particularly troublesome.

The Fourier Transform of the f-function will be writte.n as

oo

F(K)- ,_[f(z)] = j" f(z)e+iKZdz (66)
--oo

The relationships for the Fourier Transform of derivatives of the f-function are

2[f'(z)] = -i_:F(K) (67)

and

2[f"(z)] = -K2 F(_:)

and the inverse transform is defined as

(68)

1 f e_iV.zFOc)d_ ¢ (69)f(z) =
--00

Note that this form of the Fourier Transform pair is the complex conjugate of that found

in many reference works. The choice of sign on the exponent in the integrand is arbitrary.

We will denote the Fourier Transform of the h-function as

_(K) = _[h(z)]

15



Taking the Fourier Transform of Equation (56), using the relationships for Fourier

Transforms of derivatives, and solving for the Fourier Transform of fro, we get

[ ;K_(2) _ K2Q(m3) ]_(K) + r_(4) H -(5)u n(6)H
Fmn (K) = Q(ml)"-* _emn '_ mn 4 + QmnXX5 + "_ mn 6 (70)

where I-h, Hs, and 1-16are the Fourier Transforms of the functions involving ratios of h(z),
defined as

and

(71)

There are six inversion integrals to be evaluated:

(73)

1 _o (1) -is

I Qmn_(_:)e d_:GI(z) = _ (k 2 2 _(I_M 2_
(74)

1 o_ • (2) -inz
-1KQmn_(K)e dl( (75)

1 o_ 2 (3) -is
-1< Qmn_(K:)e d_: (76)

1 _ (4) -ir.z
QmnH4(K)e d_: (77)

16



Q(Sm_)H5 (_:)e-iKz dK-o tG_(_)=___ (k_ +2kM,_
(78)

and

1 _ (6) -iv.z

I QnmH6(K:)e dKG6(z) = _-x, (k2 _ Ot2mn)+ 2kMK _ (1 _ M2)K2
(79)

The first three integrals will be evaluated using the residue theorem, and the last three

integrals will be shown to take simple forms for the particular form ofh(z) chosen.

To apply the residue theorem, we need to find the roots in the denominator of the

integrand, which is the same in all the integrals. We assume that the Fourier transform of

h(z) possesses no singularities so that all the roots are obtained from the denominator,

+ +(k:- 0 (80)

There are two values of K that satisfy this relationship:

2 2

1-M 2
(81)

These can be identified as the axial propagation constants for forward and backward

traveling waves in a duct with uniform flow. In terms of the two roots, we can write the

denominator of the integrand as

(82)

Substituting this into Equation (74) for G_(z) gives

Q1 _ '_(K) e-i=dz

Gl(z)- 2x(1 - M2) _j'®(K - (_ - K-(2))
(83)

The inverse Fourier Transform can be evaluated in this

theorem, and the method is considered in detail in Appendix B.

forward-traveling (m,n) mode can be shown to be

case using the residue
The solution for the
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..1. ' +

Gl(Z) = iQ (ml)n _(-K mn)e'_:"_ z (84)

where

_/ 2 2-kM+ k2-(l-M )_mn

K+mn = l_M2 (85)

is the axial propagation constant for the forward-propagating (m,n) mode.

Similarly, the solutions for G2 and Gs can be obtained as

+ n(2)G2(z) = -Kmn.._m n

_[ + _ i_¢_anz
_--Knm)e

(86)

and

G3(z ) = i(K + t20(3)
mrl] '_mn

_k 2 - (1- M2)tZ2mn

(87)

We can evaluate the G4, Gs, and G6 functions if we make some restrictions on the

form of the ratios of h-functions and derivatives in I-h, Hs, and He. If we require that I-h,

Hs, and 1--16have no poles to contribute to the residues within the contour of integration,

the solution for the (34, Gs, and (36 functions can be written in terms oft-h, Hs, and 1-16as

n4(z ) - iQ(rnn) l-lnt--Kmn)e (88)

Gs(z )- iQ(mS) Hs(-K+mn)ei_C+z (89)

:
and
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.'r / + \ iK_mz

O6(z) = iO(m6) 1-16_-K mn)e (90)

To derive these inverse Fourier transformations, we have had to apply restrictions

on the form of the actuator velocity z-dependence. We require that the Fourier transform

of h(z) have no poles in the lower half plane (see Appendix B), and that the Fourier

transforms of the derivative ratio functions also have no poles in the lower half plane.

Without these restrictions, it is necessary to return to the original Fourier Transform

integrals, which may be very difficult to evaluate.

2.6 Solution for the Acoustic Pressure Field Generated by the Actuators

The (m,n) mode contribution for the f-function that was used to transform the

differential equation and boundary conditions has been determined and can be written

finn(Z) = ff-l[Fmn(K)] = G 1 + G a + G 3 + G 4 + G 5 + G 6 (91)

writing out the G-terms, this becomes

iQ(ml)n _.+ _(2) .-1 + _(--K+mn) eiK=zfmn(Z) : ---_----'-m_-_m. +'_Km.) Umnj'jk--__--__MV)tx2mn

(92)

• +

t , ,+ ]/QmnH5(-Kmn) + QmnH5( -Kmn ) k2 ('17_.i2)O_2mn

i [Qm.H4I_Km, + (s) + (5) + e'_:=z?

Then. combining Equations (21). (22), and (39). we can express the pressure field

in the rn_ order spinning mode generated by the wall-mounted inner and outer actuator

ring source as

p(r,0, z)= fm(z)_mn(_mnr)]+ Bl(z)r + 2B2(z)r 2 h(z) e ira0 (93)

The only unknown left to make this a computable formula is the Fourier Transform of the

actuator velocity profile in z. This, of course, depends upon the choice of function used to

represent the piston vibration, and will be solved for the particular case of a box function
in the next section.
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3. Solution for Box Function Actuator

3.1 Choice of Box Function Actuator Velocity Profile

Several choices present themselves for the shape of the axial velocity profile for

the actuator motion, h(z). The preferred choice will have a known and acceptable Fourier

transform and will furthermore have a simple Fourier Transform for the three ratio

functions involving h(z) and its first and second derivatives. It is assumed that the

circumferential velocity profile has already been accounted for in the spinning mode

decomposition.

Three more obvious possibilities are:

1. Delta function source - zero axial length but finite volume velocity

2. Box function source - rigid piston motion with a displacement and velocity

discontinuity at the edges

3. Half-sine-wave source - good representation of the lowest simply-supported plate

vibration mode, displacement and velocity go to zero at the edges.

The Fourier Transform of the delta function is well known, but some difficulty may

be encountered in finding the transforms of combinations like

t, 5(z)j' t. 5(z) f t, S(z)

Also, a function of finite extent may be a better physical representation of the actuator for

the shorter modal axial wavelengths. For these reasons, the delta function was not

considered at this time.

The box function, as illustrated in Figure (2) has a constant velocity amplitude

between 0 < z _<L, and represents the motion of a rigid piston actuator. The Fourier

Transform of this function is given by

1 e -ir'L - 1

_(-K) = 2x/_- -i_: (94)

Since the first and second derivatives of h(z) are zero (neglecting edge effects), we have

H 4 = H 5 = H 6 = 0 (95)

This is the velocity function used for further illustration by a sample calculation.

The box function could be an approximate representation of a source of any other shape
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by choosing the velocity of the piston based on an effective volume velocity for the more

complex actuator.

Wall

z=O

Actuator
Motion

z=L

Wall

Figure (2) Diagram of box function axial velocity profile for actuator.

The very realistic half-sine-wave velocity profile has an easily calculated Fourier

transform, but the transform of the ratio functions may take some additional effort.

Examination of this case is left for the future, and is recommended as a follow-on task.

3.2 Sample Computations for Box Function Case

The computer program FDANC has been written to compute the acoustic pressure

coupling of wall-mounted rings of ANC actuators in cylindrical or annular ducts. The

program was used to compute the modes generated in the inlet and exhaust ducts of an

analytical model that simulates the NASA ANC Fan that is mounted in the NASA Lewis

AAPL Test Facility. The parameters that are held constant throughout the computations

are the following:

Inlet and Exhaust outer radius = 2.0 feet

Exhaust inner radius = 0.6145 feet

Flow temperature = 70 degF

Spinning mode order, m = 6

Number of radial modes = 6

Outer wall SPL = 110 dB

Axial length of ANC actuator = 4.5 inches

For this study, both cylindrical and annular ducts were considered, using the above

parameters. Two values of mean flow Mach number were used, Mach 0.0 and 0.1. The
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annular duct case was run with actuators on the outer wall only, inner wall only, and both

walls. For the cases with actuators on both the inner an outer walls, the inner wall

actuator velocity was set to a value based on the ratio of the first radial mode shape at the

inner wall to that at the outer wall. Two cases with a higher radius ratio (R]R2 = 0.75)

were compared. Finally, a case at a higher frequency with two cut-on radial modes is

presented. A brief outline of the differences among the cases is presented in Table (1):

Table (1) Differences among sample cases used for computations. All cases have

same outer radius (R2 = 2.0) and same spinning mode order (m = 6).

Case

Number

Inner
Radius

Rt_ft.
0.0

Mach
Number

Frequency
Hz.

Inner
Actuator
Active?

00 935 nJa

Outer
Actuator
Active?

Yes

2 0.6146 0.0 935 No Yes

3 0.0 0.1 935 n/a Yes
4 0.6146 0.1 935 No Yes

5 0.6146 0.1 935 Yes No
6 0.6146 0.1 935 Yes Yes
7 1.5 0.1 935 No Yes

8 1.5 0.1 935 Yes Yes
13500.1 Yes1.5 Yes

3.2.1 Computer Output for Case 1, Cylindrical Duct, Mach 0.0, m = 6

This is a basic run for the inlet duct to illustrate the program output. This case has

no mean flow, and the frequency is such that only one radial mode is cut-on for the m = 6

spinning mode. The results will be compared below to a flow case.

PROGRAM. FDANCI - TURBOFAN ANC SPECS

CYLINDRICAL OR ANNULAR HARDWALL DUCT ROOTS FOUND AS

ROOTS OF DERIVATIVE OF BESSEL FUNCTION

INNER RAD = .000 OUTER PAD : 2.000 DUCT HGT = 2.000 ft

DUCT MACH _ = .00000

FLOW TEMPERATURE = 70.00000 deg F
SPEED OF SOUND = 1128.295 ft/sec 343.904 m/sec

FREQUENCY = 935.0 Hz., ETA = 1.65737

WAVE NUMBER, k = 17.08260 per m., kH = 10.41355

SPL = 110.000 dB

AXIAL LENGTH OF ANC PORT = 4.500000 in.

AIR DENSITY = 1.2300E+00 kg/m^3

RHO*CS = 423.0022 MKS Rayls

SPINNING MODE ORDER, m = 6

NUMBER OF RADIAL MODES = 6

THIS DUCT TAKEN AS CYLINDRICAL WITH INNER RADIUS SET TO 0

JR HW ROOT PROP CNST (RE,IM) CUT-OFF FRQ

ALPHA*R2 PER METER HZ

HW COR

1.39

.89

.68

.56

1 7.501266 i1.848900 .900000 673.515

2 i1.734940 .000000 8.874456 1053.643

3 15.268180 -.000001 18.316620 1370.882

4 18.637440 -.000001 25.355620 1673.297

AXL WVLNTH

ft

.5303

.0000

.0000

.0000

MOD ANG

deg

46.08

90.00

90. O0

90.00
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5 21.931720 -.0C0001 31.663000

6 25.183930 -.000002 37.614940

1969.180 .47 .0000 90.00

2261.186 .41 .0000 90.00

PRESSURE AT SPL = 6.3246E+00 nt/m^2

ENERGY IN J=l MODE = 2.7583E-02 watts

DESIRED MODE AMPLITUDE = 1.7859E+01 nt/m^2

INITIAL PISTON VELOCITY, INNER WALL =

INITIAL PISTON VELOCITY, OUTER WALL =

INNER VELOC/OUTER VELOC = .000000

.000000

1.O0000C,

.000000

.000000 m/sec

.000000 m/sec

JR EV-ALPHA MODE C-VAL MODE COEFF (RE,IM)

PER METER n</m^2

1 12.305230 .000000 .000000

2 19.250220 .000000 .000000

3 25.046230 .000000 .000000

4 30.573230 .000000 .000000

5 35.997220 .000000 .000000

6 41.312210 .000000 .000000

1.785888E+01

1.535435E-01

1.788268E-01

7.065713E-02

8.507293E-02

1.325678E-02

-I.561900E-0T

1.909916E-01

2.224413E-01

8.788983E-02

1.058215E-01

1.649000E-02

VELOCITY AT INNER WALL = 0.O0000E+00

VELOCITY AT OUTER WALL = -5.77585E-02

DISPLACEMENT kMPLITUDE, INNER WALL =

DISPLACEMENT AMPLITUDE, OUTER WALL =

0.00000E+00 m/s

4.64337E-02 m/s

0.00000E+00 in

4.96668E-04 in.

MAG MODE _PL

nt/m^2

1 7859E+01

2 4506E-01

2 8541E-01

1 1277E-01

1 3578E-01

2 I158E-02

It should be noted that the values in the column marked "HW ROOT" are the

roots of the Bessel function boundary condition, Ymj,which are nondimensional, but that

the value in the column marked "EV-ALPHA" are the (z=j, in dimensions of 1/meters. The

propagation constants are also in units of 1/meters. The MODE C-VAL is the coefficient

that multiplies the Bessel function of the second kind in the annular duct eigenfunction,

and thus is zero for the cylindrical duct eigenfunction. The columns marked MODE

COEFF (RE, IM) are the complex mode coefficients for the pressure solution, and are the

desired results of the computation.

Note that the desired mode amplitude to achieve 1 I0 dB SPL in the first radial

mode (the only cut-on mode) requires a pressure amplitude of 6.32 nt/m 2 at the outer wall

and a mode coefficient amplitude of 17.86 nt/m 2. The displacement amplitude that is

required for the actuators to generate this mode coefficient is 5.0x10 "4in.

The magnitudes of the mode coefficients for this case are plotted in Figure (3), and

the pressure profile is shown in Figure (4). Note that the second highest mode, the third,

is 36 dB down from the first mode, indicating excellent coupling to the cut-on mode for

this case. The pressure profile is essentially the pure m = 6, j = 1 Bessel function of the

first kind.
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Figure (3) Mode coefficients for Case 1
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Figure (4) Pressure profile for Case 1
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3.2.2 Computer Output for Case 2, Annular Duct, Mach 0.0, m = 6, Outer Wall

Actuator Only

This case is for the annular duct with no flow, with a radius ratio of 0.307. The

actuator velocity at the inner wall in this case is set equal to zero. The output for the

annular duct case is slightly different, and is shown below:

PROGRAM FDANCI - TURBOFAN ANC SPECS

CYLINDRICAL OR ANNULAR HARDWALL DUCT ROOTS FOUND AS

ROOTS OF DERIVATIVE OF BESSEL FUNCTION

INNER RAD = .615 OUTER RAD = 2.000 DUCT HGT = 1.385 ft

DUCT MACH # = .00000

FLOW TEMPERATURE = 70.00000 deg F

SPEED OF SOUND = 1128.295 ft/sec 343.904 m/sec

FREQUENCY = 935.0 Hz., ETA = 1.14806

WAVE NUMBER, k = 17.08260 per m., kH = 7.21347

SPL = ii0.000 dB

AXIAL LENGTH OF ANC PORT = 4.500000 in.

AIR DENSITY = 1.2300E+00 kq/m^3

RHO*CS = 423.0023 MKS Rayls

SPINNING MODE ORDER, m = 6

NUMBER OF RADIAL MODES = 6

ANNULAR DUCT ANALYSIS USED

J GREC GCYL GANN

1 .0000 7.5013 7.5010

2 4.5353 11.7349 11.7178

3 9.0706 15.2682 15.1073

4 13.6059 18.6374 18.1882

5 18.1411 21.9317 21.5424

6 22.6764 25.1839 25.3502

JR HW ROOT PROP CNST [RE,IM) CUT-OFF FRQ

ALPHA*R2 PER METER HZ

HW COR AXL WVLNTH

ft

1 7.501023 11.849320 .000000 673.493

2 11.717810 .000000 8.813345 1052.105

3 15.107290 -.000001 17.954040 1356.436

4 18.188200 -.000001 24.461990 1633.061

5 21.542440 -.000001 30.935500 1934.228

6 25.350170 -.000002 37.914260 2276.112

1.39

.89

.69

.57

.48

.41

5303

0000

0000

0000

0000

0000

PRESSURE AT SPL = 6.3246E+00 nt/m_2

ENERGY IN J=l MODE = 2.7591E-02 watts

DESIRED MODE AMPLITUDE = 1.7859E-01 nt/m^2

INITIAL PISTON VELOCITY, INNER WALL =

INITIAL PISTON VELOCITY, OUTER WALL =

INNER VELOC/OUTER VELOC = .000000

.000000

1.000000

.000000

.000000 m/sec

.0000O0 m/sec

JR EV-ALPHA MODE C-VAL MODE COEFF (RE, IM)

PER METER nt/m^2

i 12.304830 -.000129

2 19.222130 -.014592

3 24.782310 -.148402

4 29.836290 -.451348

5 35.358650 -.392167

6 41.584930 .162785

000000

000000

000000

000000

000000

000000

1.785888E+01

6.858777E-01

6.013200E-02

-7.545694E-02

2.288906E-02

-4.326065E-02

-1.703681E-07

8.531162E-01

7.479410E-02

-9.385574E-02

2.847013E-02

-5.380896E-02

VELOCITY AT INNER WALL = 0.000O0E+0¢

VELOCITY AT OUTER WALL = -7.17790E-02

DISPLACEMENT AMPLITUDE, INNER WALL =

DISPLACEMENT AMPLITUDE, OUTER WALL =

0.00000E+00 m/s

5.77080E-02 m/s

0.00000E+00 in

6.17243E-04 in.

MODANG

deg

46.08

90.00

90.00

90.00

90.00

90.00

MAG MODE AMPL

nt/m^2

1.7859E+01

1.0946E+00

9.5969E-02

1.2043E-01

3.6530E-02

6.9043E-02
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Figure (5) shows the mode coefficient magnitude for this case, and Figure (6)

shows the pressure profile. Note that the second radial mode is 24 dB down from the first

mode in this case, indicating very good coupling efficiency. An actuator displacement

amplitude of 6.2x10 -4 inches is required to achieve the required SPL level. Generally, the

case is very similar to the cylindrical duct case, as one might expect at this low radius

ratio.

i.oo_,*,o 1

1.0OE _.00

iiii'

case 02

Figure (5) Mode coefficients for Case 2
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Figure (6) Pressure profile for Case 2
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3.2.3 Comparison of Cases 1 and 3

Cases 1 and 3 are for the cylindrical duct, Case 1 with no flow and Case 3 with a

flow Mach number of 0.1. The mean flow of Mach 0.1 has had very little effect on the

mode coupling due to the actuator in this case, as can be seen from Figure (7), which

compares the mode magnitudes for the cases with and without flow. The pressure profiles

are nearly indistinguishable from those presented previously.

Case 01 vs. Case 03

lC_.0O

10.00

1.00

0.10

O.Ol

1 2 3 4 $ 6

Ra#ia! Mode Ntmmer

Figure (7) Mode coefficients for Case 3 compared to coefficients for Case 1.

3.2.4 Comparison of Cases 2 and 4

Cases 2 and 4 compare the annular duct with and without flow. Case 4 is the

baseline case for the annular duct with the actuator active on the outer wall only, with

Mach 0.1 flow. As in the cylindrical duct case, the mean flow of Mach O. 1 has had little

effect. Figure (8) compares the modes generated by the actuator for Case 2 (no-flow) and

Case 4 (Mach 0.1). The pressure profiles are nearly indistinguishable from those

presented previously.
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Case 02 vs. Case 04
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Figure (8) Comparison of mode coefficients for Cases 2 and 4.

3.2.5 Comparison of Cases 4 and 5

In Case 5, only the inner wall of actuators is active, otherwise the conditions are

the same as for Case 4. Figure (9) compares the generated mode magnitudes for Cases 4

and 5, and indicates that the actuators at the inner wall only tend to generate higher output

in the higher order modes, an indication of reduced coupling efficiency. The second mode

is 14.7 dB down in Case 5, compared to 24.7 dB down in Case 4. Figure (10) shows the

slightly different pressure profile obtained from the inner wall actuator case.
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Figure (9) Comparison of mode coefficients for Cases 4 and 5.
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3.2.6 Comparison of Cases 4 and 6

In Case 6, both inner and outer actuators are active It is necessary to choose the

relative magnitude and phase of the velocity for the inner actuators for input to the
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problem. The objective is to choose the magnitude and phase of the inner actuators such

that the combination of actuators gives the least amount of amplitude to the higher order

modes, coupling most efficiently to the cut-on mode. There is no direct method of

deriving this inner actuator velocity a priori (one would have to use the analysis developed

in this study in the backward sense, rather than the forward sense of predicting what

pressure modes couple to a given actuator motion).

As a first estimate, the inner actuator velocity was set to a magnitude and phase

determined by the ratio of the pressure first mode eigenfunction at the inner radius to the

pressure at the outer surface, assuming the velocities might have roughly the same ratio.

The inner to outer radius pressure ratio was determined to be 0.015432 + 0.0i.

Figure (11) compares the mode coefficients for these two cases, and indicates that
there is not much difference. The radius ratio in this case, however, is quite low, at 0.31,

so that the velocity at the inner actuator is quite small. There may be some other value of

inner wall actuator velocity that offers some improvement in coupling efficiency, but it

would have to be sought by trial and error.

IOD.O0 -

I0,00 •

1.00,

0.I0

0.01

Case 04 vs. Case 06

1 2 3 4 5 6

Ra_al Mode Number

Figure (11) Comparison of mode coefficients for Cases 4 and 6

3.2.7 Comparison of Cases 7 and 8

For Cases 7 and 8 the inner radius was increased to 1.5 feet, giving an annular duct

radius ratio of 0.75. In Case 7, only the outer wall actuator is activated. In Case 8, both

inner and outer wall actuators are activated, and the ratio of inner wall actuator velocity to
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outer wall is determined using the same method described in Case 6. Figure (12) shows

the comparison of mode coefficients for Cases 7 and 8.

_00.00

1.00
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Figure (12) Comparison of mode coefficients for Cases 7 and 8

In this case, a marked improvement of coupling efficiency is noted. The second

radial mode is 24.3 dB down in Case 7 with outer wall actuators only, but the second

radial is 37 dB down for Case 8, for this particular choice of inner wall actuator velocity.

Although this may not be the optimum coupling efficiency, it does indicate the potential

for improved coupling to a single mode using both inner and outer actuator rings.

The pressure profiles are almost identical in these cases, since the only difference is

in the higher order mode content, which is small for both cases. It should be noted that

the substantial 24 dB difference obtained with the outer wall actuator ring only may make

the additional expense of an inner actuator ring unnecessary. It would certainly seem to

be unwise for the low radius ratio case. This would have to be evaluated on a case-by-
case basis.

3.2.8 Discussion of Case 9

Although the computer program is aimed primarily at the case in which only one

radial mode is cut on, for which it calculates the "spillover" into cut-off modes, it will

calculate the radial mode coupling independently of the number of cut-on radial modes. It

is not obvious, however, how to choose the inner wall actuator velocity relative to the

outer wall actuator velocity to best couple to two radial modes, which will have relative

magnitudes and phases. It is not clear at this point whether the two coplanar actuator

rings can be used to generate two independent radial modes.
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As an example of a case with two cut on radial modes, Case 9 increases the

frequency of Case 8 to 1350 Hz. The mode coefficients of the fan noise source are

assumed to be the following values at the actuator source plane (assuming these modes

are the anti-phase values):

A_ = 1.0 + 0.0i

A2 = 0.5 - 0.2i

This is the source that the ANC actuator system must try to match. The difficulty is to

determine the inner wall actuator velocity (relative to the outer wall), that will best match

these two modes.

In an actual ANC system with feedback control sensors, the inner and outer wall

actuator velocities in the m = 6 mode would be adjusted (in somewhat of a trial-and-error

process) by the control system to values that attempt to achieve cancellation. A key

question is whether such a set of control parameters exist, because this will bear directly

on the stability of the control system operation.

In this case, a first guess at the inner wall velocity was made by computing the

ratio of the pressure of the sum of the two fan source modes at the inner wall to the

pressure of the sum of the two fan source modes at the outer wall. The following is the

output run for this case:

PROGRAM FDANCI - TURBOFAN ANC SPECS

CYLINDRICAL OR ANNULAR HARDWALL DUCT ROOTS FOUND AS

ROOTS OF DERIVATIVE OF BESSEL FUNCTION

INNER RAD = 1.500 OUTER PAD = 2.000 DUCT HGT = .500 ft

DUCT MACH _ = .i0000

FLOW TEMPERATURE = 70.00000 deg F

SPEED OF SOUND = 1128.295 ft/sec 343.904 m/sec

FREQUENCY = 1350.0 Hz., ETA = .59825

WAVE NUMBER, k = 24.66471 per m., kH = 3.75890

SPL = ii0.000 dB

AXIAL LENGTH OF ANC PORT = 4.500000 in.

AIR DENSITY = 1.2300E+00 kg/m^3

RHO*CS = 423.0023 MKS Ray!s

SPINNING MODE ORDER, m = 6

NUMBER OF ,RADIAL MODES = 6

ANNULAR DUCT ANALYSIS USED

J GREC GCYL GANN

1 .0000 7.5013 6.8531

2 12.5664 i1.7349 14.4285

3 25.1327 15.2682 26.0950

4 37.6991 18.6374 38.3452

5 50.2655 21.9317 50.7513

6 62.8319 25.1839 63.2209

JR HW ROOT PROP CNST (RE, IM) CUT-OFF FRQ HW COR

ALPHA*R2 PER METER HZ

1 6.853070 19.713180 .000000 612.231 2.21

AXL WVLNTH

ft

.3187

MOD ANG

deg

26.97
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2 14.428500 4.913265 .000000 1288.996

3 26.095010 -2.491387 35.074630 2331.245

4 38.345170 -2.491387 58.102920 3425.634

5 50.751250 -2.491388 79.877620 4533.954

6 63.220940 -2.491389 101.210100 5647.956

1.05

.58

.39

.30

.24

PRESSURE AT SPL = 6.3246E+00 nt/m^2

ENERGY IN J=l MODE = 4.9441E-02 watts

DESIRED MODE AMPLITUDE = 1.9178E+01 nt/m^2

INITIAL PISTON VELOCITY, INNER WALL =

INITIAL PISTON VELOCITY, OUTER WALL =

INNER VELOC/OUTER VELOC = .280375

.280375

1.000000

.163253

.163253 m/sec

.000000 m/sec

JR EV-ALPHA MODE C-VAL MODE COEFF (RE,IM)

PER METER nt/m^2

1 11.241910 -.305718 .000000

2 23.668810 -.960686 .000000

3 42.806770 1.222404 .000000

4 62.902170 .355008 .000000

5 83.253360 .063063 .000000

6 103.708900 -.105775 .000000

1.917825E+01

-9.313667E+00

4.968037E-02

6.742401E-02

1.237546E-02

2.008836E-02

VELOCITY AT INNER WALL = I.I0319E-C2

VELOCITY AT OUTER WALL = 1.77576E-03

DISPLACEMENT AMPLITUDE, INNER WALL =

DISPLACEMENT AMPLITUDE, OUTER WALL =

-1.78015E-02 m/s

-6.45257E-02 m/s

9.72090E-05 in

2.99620E-04 in.

1.2788

.0000

.0000

.0000

.0000

1.324236E-08

2.i15661E+01

1.549457E-02

9.323716E-03

!.916386E-03

2.430673E-03

72.71

90.00

90.00

90.00

90.00

MAG MODE AMPL

nt/m^2

1.9178E+01

2.3116E+01

5.2041E-02

6.8066E-02

1.2523E-02

2.0235E-02

The output modes, normalized such that the first mode is unity, are given by

A_ = 1.0 + 0.0i

A2 = -0.486 + 1.103i

The second mode generated by the actuator rings does not closely match the desired fan

source mode. A brief and cursory parametric study was made to attempt to find the inner

wall actuator velocity that would match the desired mode coefficient, but this was

unsuccessful in finding any improvement.

Since this is just a single example case, it offers neither proof nor ability to

generalize, but it may indicate that there will be problems attempting to match two cut-on

modes with coplanar actuator rings. Further investigation of the possible advantages of

inner and outer rings is warranted, and is recommended for future effort.
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4. Conclusions and Recommendations

4.1 Conclusions

An analysis has been developed to predict the modes generated in an annular duct

due to the coupling of flush-mounted ring actuators on the inner and outer walls of the

duct. The analysis has been combined with a previous analysis for the coupling of modes

to a cylindrical duct in a FORTRAN computer program FDANC to perform the

computations. The method includes the effects of uniform mean flow in the duct. The

program can be used for design or evaluation purposes for active noise control hardware

for turbofan engines.

Predictions for some sample cases modeled atier the geometry of the NASA Lewis

ANC Fan indicate very efficient coupling to the lowest order radial mode in both the inlet

and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial

mode is cut-on. Radial mode content in higher order cut-off modes at the source plane

and the required actuator displacement amplitude to achieve 110 dB SPL levels in the

desired mode were predicted. Equivalent cases with and without flow were examined for

the cylindrical and annular geometry, and little difference was found for a duct flow Mach
number of 0.1.

One case using both inner and outer actuator tings in a high-radius-ratio annular

duct indicated that, when only one radial mode is cut-on, it might be possible to phase

both tings to give a more efficient match to the desired mode than using only the outer

ring. Whether the increased matching efficiency would justify the added hardware

expense, however, is questionable.

One case was considered at a higher frequency in which two radial modes were

cut-on, in a preliminary attempt to generate anti-phase matches to both modes using

coplanar inner and outer actuator tings. In brief search, no combinations of inner and

outer actuator velocity that matched the given modes could be found. Although the

search was far from extensive, this may indicate that two coplanar tings may have a

difficult time matching two arbitrary duct modes.

4.2 Recommendations for Further Effort

Further checkout and de-bugging of the prediction program is required to achieve

a high level of confidence in its validity. This would include some parametric studies in

which frequency, radius ratio, and flow Mach number are varied. It is recommended that

the analysis be checked against test data obtained from ANC testing in the NASA Lewis

4-foot Fan Rig.

The actuator ring coupling program can be adapted as a subroutine to the

cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the
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fan sourceto be definedin termsof characteristicmodesat the fan sourceplaneand
predict the propagationto the arbitrarily-locatedANC sourceplane. The actuator
velocitiescan then be determinedto generatethe anti-phasemode. The resulting
combinedfan source/ANCpressurecan thenbe calculatedat anydesiredwall sensor
position. Theactuatorvelocitiescanbe determinedmanuallyor usinga simulationof a
controlsystemfeedbackloop.

It wouldbeusefulto determineeffectsof higherMachnumbersonmodecoupling,
sincethis preliminarystudywent only to Mach 0.1 (representativeof the flow in the
NASAANC fan). Forthecasewithoneradialmodecut-on,it wouldbeusefulto develop
an optimizationschemethat determinesthe innerwall actuatorvelocity that givesbest
couplingto theradialmode,anddeterminetheimplicationsof thisincreasein efficiencyin
termsof requiredpowerinput,etc.

Finally,the possibilityand limitationsof couplingto two cut-on radial modes
usingcoplanarinnerandouteractuatorringsshouldbeexamined.A plot of themapping
of thecomplexinnerwall actuatorvelocityto thecomplexmodecoefficientof thesecond
radialmodecouldbemadefor specificcases.Theimplicationsof theseresultsto design
of feedbackcontrolsystemsshouldbeexplored.
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5. Appendices

5.1 Appendix A- Numerical Computation of Bessei Function Integrals

The solution of the non-homogeneous differential equation that arises from the

problem of the wall velocity boundary condition in the cylindrical duct requires the

computation of four integrals involving Bessel functions of the first and second kind in the

integrands. The integrals requiring evaluation are:

r_

H_ an= __nm(°tmnr)dr

rl

(96)

r2

H_ n = _q_mn(°tmnr)rdr

rl

(97)

r2

H_ n = _¢Omn(Otmnr)r2dr

rl

(98)

and

where

r2

H_ n = _Ornn(arnnr)r3dr

rl

(99)

(Pmn (Ormn r) = J m (O_mn r) + CmnYm (°_ mn r) (100)

It may be possible to reduce the order of the Bessel function in the integration by

(101)

using identities such as

S xnOmn(X) dX = "xn(pm_l,n(X) + (n+m-1)S xn-l(pm_l,n(x)dx

and, for certain m-values, this will reduce to a closed form in Bessel functions. Generally,

however, one is left with the integral of a Bessel function that must be computed

numerically, since there is no general integration formula for the integral

J q)mn (x)dx
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where m is an arbitrary integer. Since one eventually ends up with an integral to be

evaluated numerically, it seems more straightforward to simply integrate the original forms

of the integrals by numerical integration.

A series of numerical integration subroutines have been adapted to evaluate these

integrals. The subroutines are written in FORTRAN, suitable for use on the IBM-PC, and

can be easily adapted to almost any other platform. The integrals are solved numerically

by the Romberg integration method based on subroutines provided in Numerical Recipes 4.

The subroutine CBESEL, developed at GEAE, is used to compute the Bessel functions.

The subroutines have been checked out against a MathCAD computation.

5.2 Appendix B - Contour Integrations for Inversion of Fourier Integrals

The Fourier Transform Inversion Integral required to find the z-dependent modal

coefficients of the solution to the wall velocity boundary condition equation can be split into six

separate integrals, which, in general form, are

Q(j) oo Kj_I_(K) e_iKz dK (102)

o,(z)- /
-00

for j = 1, 2, or 3, or

Q(j) oo Hj (1,:) e -iKz

for j = 4, 5, or 6, where the Q,_ are constant coefficients that depend on m and n. _(K) is the

Fourier Transform of the axial velocity function for the ANC noise source.

Following Butkov 5, these integrals can be evaluated as contour integrals in the complex

plane using the theory of residues. The path of integration must be prescribed, taking into

account poles in the complex plane. Assuming that the velocity function transforms _(_:) or

H(K) have no zeros or poles in the region surrounded by the contour, the poles of the

integrands of both integrals are at the complex points given by the roots of the denominator in

the integrand:

2 2

K(19) =-kM-+ _/k2- (1-M )(:zmn

1-M 2
(104)

Figure (13) shows the contour, which is chosen in a particular manner that remits only

in waves traveling in the positive z-direction. The contour consists of the negative and
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positivereala,si.'sandasemi-circleof infiniteradiusthatiscloseddownward. Theintegration
directionis counter-clockwise.Sincethesemi-circularpartof the integralat infiniteradius
doesn'tcontributeinthelowerhalfplane{eim--_0), theintegral,bytheresiduetheorem,is2=i
timethesumoftheresiduesenclosedbythecontour.

I Imaginary

Axis
Contributes to
Positive Wave Contributes to

X._,_ ' Nega_ave RealAxis,_

I- ..... • - ='" - 1 _ I"------1 f

I I
I I

Nega'dve Half-Plane I

Gives Minus Sign i//

,,,,,, . /t

"m__ m,l,wl,m,m _ _ ill, liB =w'_'

Figure (13) Shape of the contour for contour integration.

Thus

Gj(z) - (105)

and, since the residue at r = K:(2) is

Lira [ 1 _(K)K@I)r'z] = 1 _(K(2)) e+iK(',z
2_ 2re K(2) _ K(1)

(106)

the first integral becomes

G,(z) = - iQ(ml) "_(-K:+mn)ei":_'z (107)

Following the same reasoning and using the same comour for the second integral, it

becomes
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Gj(z) = - 2rtiQ(Ja_)Res
2n (I<:- K(1))(K- K(2))J_c=_:(2)

(108)

which,bytheresiduecalculus,reducesto

(Gj(z) = i 1<+ran Q
_(K(2))e iK(2)z

_/k 2 - (1- M2)ot2 n

(lo9)

Making the correct substitutions for K(2)and Q,_, one can use these formulae to evaluate all

required inverse transforms. The formulae apply to the cases with I-I4, Hs, and H6 if these

transforms are sufficiently well-behaved, otherwise they must be evaluated as special cases.
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